
Accessible Web Mapping Apps
ARIA, WCAG and 508 Compliance

Kelly Hutchins

Tao Zhang

Agenda
Introduction
Section 508 and WCAG
Knowledge and Techniques

Focus
Semantic HTML
WAI-ARIA and accessible components

Demo
Automated Testing
Resources

Diversity of Users
About 15% of world population lives with some form of disability
1 Billion People

Forms of Disability

Visual
A broad range from no vision (total blindness) to limited or low

vision

Motor
Users may prefer not to use a mouse, have RSI (Repetitive Strain

Injury), or physical paralysis and limited range of motion

Auditory
Users may be completely deaf or hard of hearing

Cognitive
A broad range including:

Learning disabilities
Reading disorders(dyslexia)
Attention deficit disorders(ADHD and autism)

Far more users with cognitive disabilities than all the other types of
disabilities combined

Benefits of Accessibility
Accessible interfaces is about good design and coding practice
Good accessibility is good user experience
Accessibility will enhance design, not destroy it

Section 508 and WCAG

Section 508
The Rehabilitation Act of 1973
Mandates that people with disabilities have same access to and
use of ICT (Information and Communication Technology)
comparable to those without disabilities
Products procured by government agencies must pass Section
508 requirements
Recent refresh incoporates WCAG 2.0 Level A and AA success
criteria

Published: Jan. 18, 2017
Enforcement: Jan. 18, 2018

Overview of WCAG 2.0

Level of Conformance
Level A: Sets a minimum level of accessibility and does not
achieve broad accessibility for many situations.
Level AA: Generally recommended for web-based information.
Level AAA: W3C does not recommend be required as general
policy because it is not possible to satisfy all Level AAA Success
Criteria for some content.

Knowledge and Techniques
Focus
Semantic HTML
WAI-ARIA and accessible components

Focus

Focus Introduction
Focus: Which control on the screen currently receives input from
keyboard.
Focus ring: visual focus indicator, style depending on browser
and page style.

Tab order: The order in which focus proceeds forward and
backward through interactive elements via Tab key.

Focusable elements
Native interactive HTML elements are focusable:

Text fields, Buttons, Links, Select lists ...
(Normally) not focusable:

<p>, <div>, , <h1> ...
Only focus elements that keyboard users need to interact with
Screen reader users have ways to read focusable and non-
focusable elements. ()demo

http://codepen.io/jimmieego/pen/RprZdz

Tab order matters
: Reading and navigation order, as determined by

DOM structure, should be logical and intuitive.

Be careful changing visual position of elements on screen using
CSS
Avoid jumping around tab order

WCAG 1.3.2

https://www.w3.org/TR/UNDERSTANDING-WCAG20/content-structure-separation-sequence.html

Offscreen elements
Example:
Prevent element from gaining focus when off screen

Only allow it to be focused when user can interact with it

Calcite drawer pattern

display:none;
visibility:hidden; /* alternative */

display:block;
visibility:visible; /* alternative */

http://esri.github.io/calcite-web/documentation/patterns/#drawers

Test focus
Tab through page to see tab order doesn't disappear or jump out
of logical sequence
Make sure to hide offscreen content
Rearrange elements' position in the DOM if necessary

Manage focus
tabindex="0": let natural DOM structure determine tab order
tabindex="-1": programmatically move focus (e.g., error
message, menus, radio buttons, etc.)
tabindex="5": anti-pattern

Focus management example
Customized menu

<menu-list>
<!-- After the user presses the down arrow key,
focus the next available child -->
<menu-item tabindex="0">Map</menu-item>

<!-- call .focus() on this element -->
<menu-item tabindex="-1">Layer</menu-item>

<menu-item tabindex="-1">Scene</menu-item>
<menu-item tabindex="-1">Tool</menu-item>
<menu-item tabindex="-1">Data</menu-item>
</menu-list>

Example code

http://codepen.io/jimmieego/pen/Obdebp

Keyboard traps
Keyboard focus should not be locked or trapped at one particular
element.
Temporary keyboard trap is necessary for modal dialogs:

When modal is displayed: trap focus inside modal.
When modal is closed: restore focus to previously focused
item.
Demo
Example code

http://gdkraus.github.io/accessible-modal-dialog/
https://github.com/gdkraus/accessible-modal-dialog

Semantic HTML

Accessibility tree
Browser's responsibility to expose accessibility tree to assistive
technologies.

Microsoft Edge's accessibility tree view

Chrome Canary's accessibility tree view

Shows how website is interpreted by assistive technologies and
how accessible data are provided.

Assistive technologies simulate and relay user interactions like
click and key press to accessibility tree.
As developers, we need to:

Express the semantics of page correctly.
Specify accessible names and descriptions.
Make sure important elements have correct accessible roles,
states, and properties.

Semantics in native HTML
Most HTML elements have implicit semantics (role and state).
Native HTML elements work predictably across browsers

Take advantage of this!

:

Role="link"
Accessible name="Esri Homepage"
State="focusable"

Example

Esri Homepage

http://codepen.io/jimmieego/pen/yMePRB

:

Role="checkbox"
Accessible name="Working at Esri"
State="focusable checked"

Example

<label><input type="checkbox" checked>Working at Esri</label>

http://codepen.io/jimmieego/pen/yMePRB

Keyboard
Native interactive HTML elements receive keyboard focus:

<a>, <button>, <input>...
Interactive elements have expected interactions:

Link: click, tap, or Enter key
Button: click, tap, Enter key, or Space key
Input: click, tap, or Enter key

Neutral semantics
Some HTML elements do not convey semantics (role or state):

<div>This is a block area</div>
This is an inline area

If the element is interactive, we need to do extra work:

Make it focusable: tabindex="0"
Receive keyboard events: Enter, Space
Name: explicit label (label) or implicit text (aria-label, aria-
labelledby)
Role
States and properties

WAI-ARIA
Web Accessibility Initiative – Accessible Rich Internet Applications

Why need ARIA
Use Native HTML semantics whenever possible
Certain semantics and design patterns make it impossible to use
native HTML semantics.

Example: a pop-up menu, no standard HTML element
Example: a semantic characteristic "the user needs to know
about this as soon as possible"

What is WAI-ARIA
Specification for increasing accessibility of custom elements
Allows developers to modify and augment accessibility tree from
standard DOM

ARIA doesn't augment any of the element's inherent behavior:

Focusable
Keyboard event listeners

Custom behaviors still need to be implemented

ARIA attributes
Type Purpose Examples
Roles Meaning of an

element
tooltip, tablist, search

Properties Relationships
and functions

aria-required, aria-controls, aria-
label, aria-labelledby

States Current
interaction
states

aria-checked, aria-expanded,
aria-hidden

Sighted users see a checkbox as a result of CSS
class="checkbox".
Screen reader users will not know this is meant to be a
checkbox.

An ARIA example
<li tabindex="0" class="checkbox" checked>
 Show premium content

http://codepen.io/jimmieego/pen/dvGJbJ

Screen reader will report this as a checkbox.

An ARIA example
<li tabindex="0" class="checkbox" role="checkbox" checked
aria-checked="true">
 Show premium content

http://codepen.io/jimmieego/pen/dvGJbJ

Roles
Landmarks

banner: The main header of a page; typically assigned to a
header element.
contentinfo: A collection of metadata, copyright information
and the like.
main: the main content of a document.
navigation: A collection of links for navigation.

Demo

https://www.arcgis.com/home/item.html?id=c7da180e4ca4414caa923d2e2724eb5c

Roles
Widgets

alert
dialog
data grid
tab
tablist
tabpanel

Properties - Labels
aria-label
Specifies a string as accessible label
Overrides native labeling

Properties - Labels
aria-labelledby

Specifies id of another DOM element (or a list of id)
Overrides all other name sources
Applicable to any element, not just labelable elements
Can specify visually hidden elements

Relationships
aria-owns

Indicates an element should be treated as parent of another
separate DOM element

Relationships
aria-describedby

Provides accessible description for an element
References elements in the DOM separated from current
element

Relationships
aria-controls

Indicates an element "controls" another element in interaction

<div role="scrollbar" aria-controls="main"></div>
<div id="main">
. . .
</div>

Hide elements
Elements explicitly hidden from the DOM will not be included in
accessibility tree

[hidden] {
 display: none; /*not rendered, no space allocated */
}
[invisible] {
 visibility: hidden; /*rendered, space allocated*/
}

Elements not visually rendered but not explicitly hidden is still
included in accessibility tree.

/* Screen reader only*/
.sr-only {
 position: absolute;
 left: -10000px;
 width: 1px;
 height: 1px;
 overflow: hidden;
}

aria-hidden
Excludes content from assistive technology that is not visually
hidden.
Removes current element and all of its descendants from the
accessibility tree.
Demo

http://codepen.io/jimmieego/pen/evJVLQ

Update elements
role="alert"
aria-live

Marks element as "live region" in which updates should be
communicated to users immediately.
aria-live="polite": alert user when screen reader has finished
current action
aria-live="assertive": interrupt current action and alert user
immediately

ARIA best practices
1. Do not change native semantics, unless you really have to.

Example: A developer wants to implement a heading which is
also a button.
Don't do this:

Do this:

<h2 role="button">heading button</h2>

<h2><button>heading button</button></h2>

2. All interactive ARIA elements must be usable with keyboard.

The elements should respond to standard key strokes.
Example: If using role="button", add tabindex="0" and support
Enter and Space actions.

The user must be able to navigate and perform actions using
keyboard.

Example: If allowing clicking through data grid, support
navigating grid cells using keyboard.

3. Do not use `role="presentation"` or `aria-hidden="true"` on a
visible and focusable element.

This will result in focusing on "nothing".
Don't do these:

<button role="presentation">Press me</button>
<button aria-hidden="true">Press me</button>

4. All interactive elements must have an accessible label or name.

Do this:

<label>
 Email
 <input type="text" placeholder="name@example.com">
</label>

Create Accessible Web Components

ARIA Design Patterns

https://www.w3.org/TR/wai-aria-practices-1.1/

Accessible Map
For low-vision users:

Color contrast
Color blindness
Scaling and images of text

For non-sighted users:
Alternative text for map's core information
Accessibility in Google Maps

https://support.google.com/maps/answer/6396990?co=GENIE.Platform%3DDesktop&hl=en

Common Accessibility Issues:

Text alternatives
Semantic HTML
Tab order and focus
Color
Label

Demo

http://servicesbeta.esri.com/demos/a11y/index.html

Automated Testing

A11Y command-line tool

by Addy Osmani

npm install -g a11y
a11y www.esri.com > audit.txt

https://addyosmani.com/a11y/

A11Y module usage
a11y(URL, callback) accepts a string as input and takes a callback
providing a reports object with the accessibility audit for the
supplied URL.

var a11y = require('a11y');
a11y('esri.com', function (err, reports) {
 var output = JSON.parse(reports);
 var audit = output.audit; //a11y formatted report
 var report = output.report;
 //Chrome devtools accessibility audit formatted report
 reports.audit.forEach(function (el) {
 // result will be PASS, FAIL or NA
 if (el.result === 'FAIL') {
 // el.heading
 // el.severity
 // el.elements
 }
 });
});

axe-core
Accessibility engine for automated Web UI testing by :dequelabs

npm install axe-core --save-dev

<script src="node_modules/axe-core/axe.min.js"></script>
<!-- Normal page content ... -->
<script>
 axe.run(function (err, results) {
 if (err) throw err;
 ok(results.violations.length === 0,
 'Should be no accessibility issues');
 // complete the async call
 });
</script>

https://github.com/dequelabs/axe-core

Resources
Documentation

Courses
egghead.io:
Udacity:

Some of the diagrams are adapted from

W3C-WCAG 2.0
Interpretation of success criteria
WAI-ARIA Authoring Practices 1.1

Start Building Accessible Web Applications Today
Web Accessibility by Google

a11y
axe-core
aXe Chrome extension
Chrome Accessibility Developer Tools

Google Developers:
Web Fundamentals

https://www.w3.org/TR/WCAG20/
https://www.wuhcag.com/wcag-checklist/
https://www.w3.org/TR/wai-aria-practices-1.1/
https://egghead.io/courses/start-building-accessible-web-applications-today
https://www.udacity.com/course/web-accessibility--ud891
https://github.com/addyosmani/a11y
https://github.com/dequelabs/axe-core
http://www.deque.com/products/axe/
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb?hl=en
https://developers.google.com/web/fundamentals/

